Abstract

We investigate a tripartite quantum Rabi model (TQRM) wherein a bosonic mode concurrently couples to two spin-1/2 particles through a spin-spin interaction, resulting in a spin-spin-boson coupling—a departure from conventional quantum Rabi models featuring bipartite spin-boson couplings. The symmetries of the TQRM depend on the detuning parameter, representing the energy difference between the spin states. At zero detuning a parity symmetry renders the TQRM reducible to a quantum Rabi model. A subradiant-to-superradiant transition in the ground state is predicted as the tripartite coupling strength increases. For nonzero detuning the total spin emerges as the sole conserved quantity in the TQRM. It is found that superradiance prevails in the ground state as long as the tripartite coupling remains nonzero. We derive the Braak G function of the TQRM analytically, with which the eigenspectra are obtained. The TQRM can be realized in a viable trapped Rydberg ion quantum simulator, where the required tripartite couplings and single-body interactions in the TQRM are naturally present. Our study opens opportunities to explore and create correlations and entanglement in the spin and motional degrees of freedoms with the TQRM. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.