Abstract

Cold polar molecules have long coherence time and strong dipole-dipole interaction and thus are regarded as a promising quantum carrier for quantum information processing. In this paper, by employing the pendular states of polar molecules as qubit, we investigate the properties of three types of tripartite quantum correlations for three linear polar molecules and numerically analyze the relations of tripartite negativity, measurement-induced disturbance (MID), and tripartite quantum discord (TQD) to three dimensionless reduced variables that relate to external field strength, dipole moment, rotational constant, dipole-dipole coupling, and temperature. The result shows that if the values of the other parameters are fixed, the three quantum correlations decrease with the increase of the field strength, and the three quantum correlations first increase to their respective maxima and then diminish gradually as the dipole-dipole coupling becomes larger. Moreover, as the temperature increases, both tripartite negativity and TQD become small, but with the variation of temperature there exhibit different evolution tendencies for MID between the influence of the electric field strength and that of the dipole-dipole coupling. In addition, the three quantum correlations of polar molecules in pendular state can be manipulated by tuning the external electric field strength, dipole-dipole coupling, and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.