Abstract

BackgroundMicroglial cell activation is the first response to spinal cord injury (SCI). The purpose of the study was to investigate the role and mechanism of tripartite motif containing 52 (TRIM52) in microglial cell activation and the inflammatory response.Material/MethodsThe cerebral cortex was isolated in rats, and primary microglial cells were subsequently incubated for 7 to 9 days and activated by lipopolysaccharide (LPS). TRIM52 overexpression and interference lentivirus were constructed, and primary microglial cells were transfected. Cytokine levels of interleukin-1β and tumor necrosis factor-α were detected using enzyme-linked immunosorbent assay kits. TRIM52 mRNA expression and protein levels were examined by real-time polymerase chain reaction and nuclear factor-kappa B (NF-κB) and inhibitory kappa B-alpha (IκBα) protein expression were examined by western blot. The interaction between TRIM52 and IκBα was analyzed by co-immunoprecipitation (Co-IP) detection. Microglial marker Iba-1 and microglial cell activation marker OX-42 were detected by immunofluorescent staining.ResultsPrimary rat microglial cells were successfully isolated and activated by LPS. The expression levels of cytokines and TRIM52 and nuclear accumulation of NF-κB in microglial cells all increased in a dose-dependent manner with LPS. Cytokine and nuclear NF-κB levels decreased after TRIM52 knockdown, while the opposite expression pattern was found in microglial cells transfected with TRIM52 gene overexpression lentivirus. Co-IP revealed the association between TRIM52 and IκBα, and overexpressed TRIM52 promoted the ubiquitination of IκBα and significantly reduced its protein expression.ConclusionsTRIM52 activated the NF-κB signaling pathway by promoting IκBα ubiquitination, thereby regulating LPS-induced microglial cell activation and the inflammatory response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.