Abstract
Trim28 appears up-regulated in many cancers. In early stage lung tumors high Trim28 correlates with increased overall survival and Trim28 reduces cell proliferation in model lung cancer cell lines through E2F interactions. Trim28 may have a tumor suppressing role in the early stages of lung cancer. These results suggest a complex role for Trim28 in lung cancer. Trim28 is a poorly understood transcriptional co-factor with pleiotropic biological activities. Although Trim28 mRNA is found in many studies to be up-regulated in both lung and breast cancer tissues relative to normal adjacent tissue, we found that within a panel of early-stage lung adenocarcinomas high levels of Trim28 protein correlate with better overall survival. This surprising observation suggests that Trim 28 may have anti-proliferative activity within tumors. To test this hypothesis, we used shRNAi to generate Trim28-knockdown breast and lung cancer cell lines and found that Trim28 depletion led to increased cell proliferation. Likewise, overexpression of Trim28 led to decreased cell proliferation. Confocal microscopy indicated co-localization of E2F3 and E2F4 with Trim28 within the cell nucleus, and co-immunoprecipitation assays demonstrated that Trim28 can bind both E2F3 and E2F4. Trim28 overexpression inhibited the transcriptional activity of E2F3 and E2F4, whereas Trim28 deficiency enhanced their activity. Co-immunoprecipitations further indicated that Trim28 bridges an interaction between E2Fs 3 and 4 and HDAC1. Promoter-reporter assays demonstrated that the ability of HDAC1 to repress E2F3 and E2F4-driven transcription is dependent on Trim28. Trim28 depletion increased E2F3 and E2F4 DNA binding activity, as measured by chromatin-immunoprecipitation (ChIP) assays while simultaneously reducing HDAC1 binding. Finally, ChIP-ReChIP experiments demonstrated that Trim/E2F complexes exist on several E2F-regulated promoters. Taken together, these results suggest that Trim28 has anti-proliferative activity in lung cancers via repression of members of the E2F family that are critical for cell proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.