Abstract
Members of the tripartite motif (TRIM) family are a part of the innate immune system to counter intracellular pathogens. TRIM22 has been reported to possess antiretroviral activity. Here we report that TRIM22 is involved in antiviral immunity against hepatitis B virus (HBV). Our results showed that TRIM22, being a strongly induced gene by interferons in human hepatoma HepG2 cells, could inhibit HBV gene expression and replication in a cell culture system as well as in a mouse model system. Importantly, it was found that TRIM22 could inhibit the activity of HBV core promoter (CP) in a dose-dependent manner. However, TRIM22 lacking the C terminal SPRY domain lost this activity. Further study showed that the SPRY domain deletion mutant was localized exclusively to the cytoplasm of HepG2 cells. In contrast, the wild-type TRIM22 was localized to the nucleus, as expected for a transcriptional suppressor. Interestingly, although RING domain mutants of TRIM22 were localized to the nucleus, they could not inhibit HBV CP activity, indicating that TRIM22-mediated anti-HBV activity was dependent on the nuclear-located RING domain. These findings suggest that TRIM22, which exhibits anti-HBV activity by acting as a transcriptional suppressor, may play an important role in the clearance of HBV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.