Abstract

In this paper we consider the situation that three identical two-level atoms resonantly interact with three distant single-mode optical cavities via a one-photon hopping separately, and there exist the phenomena of atom-decay and cavity-decay. Under Jaynes-Cummings model the time evolution of the system is given. The tripartite negativity is used to quantify the degree of tripartite entanglement. The tripartite entanglement dynamics among atoms and among cavities are studied. The influences of the atom-decay and the cavity-decay on tripartite entanglement are discussed. The results obtained using the numerical method show that the tripartite entanglement among atoms and that among cavities all display damping oscillation behavior. On the other hand, as the atomic decay rate increases, their decays are accelerated, and so do they with the increase of cavity decay rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.