Abstract

Thyroid hormone receptor interactor 13 (TRIP13) is a member of the ATPases associated with various cellular activities family of proteins and is highly conserved in a wide range of species. Recent studies have demonstrated that TRIP13 is critical for the inactivation of the spindle assembly checkpoint and is associated with the progression of certain cancers. In the present study, the role of TRIP13 in colorectal cancer (CRC) was examined. Reverse transcription-quantitative polymerase chain reaction analysis revealed that TRIP13 messenger RNA was highly expressed in multiple CRC tissues. The depletion of TRIP13 in CRC cells suppressed cell proliferation, migration and invasion. To determine whether the catalytic activity of TRIP13 was critical for cancer progression, an inactive mutant of TRIP13 was expressed in CRC cells. The invasion of cancer cells that expressed the mutant TRIP13 was significantly reduced compared with that of the wild type TRIP13-expressing cancer cells. These results indicate that TRIP13 could be a potential target for CRC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.