Abstract

ABSTRACTIn search for bone and dentin extracellular matrix (ECM) proteins, transforming growth factor beta receptor II interacting protein 1 (TRIP-1) was identified as a novel protein synthesized by osteoblasts and odontoblasts and exported to the ECM. TRIP-1 is a WD-40 (WD is Tryptophan-Aspartic acid dipeptide) protein that has been well recognized for its physiological role in the endoplasmic reticulum (ER). In the ER, TRIP-1 functions as an essential subunit of eukaryotic elongation initiation factor 3 and is involved in the protein translational machinery. Recently, we reported that TRIP-1 is localized in the ECM of bone and dentin. In this study, we demonstrate that varying concentrations of TRIP-1 can participate in the nucleation of calcium phosphate polymorphs. Nucleation studies performed with high calcium and phosphate concentration demonstrated that recombinant TRIP-1 could orchestrate the formation of hydroxyapatite crystals. Nucleation experiments performed on demineralized and deproteinized dentin wafer under physiological conditions and subsequent transmission electron microscope analysis of the deposits at the end of 7 and 14 days showed that TRIP-1 promoted the deposition of calcium phosphate mineral aggregates in the gap-overlap region of type I collagen. Taken together, we provide mechanistic insight into the role of this intracellular protein in matrix mineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call