Abstract
BackgroundTriolein, a symmetric triglyceride exhibiting anti-inflammatory and antioxidant properties, has demonstrated potential in mitigating cellular damage. However, its therapeutic efficacy in ischemic stroke (IS) and underlying molecular mechanisms remain elusive. Given the critical roles of inflammation and autophagy in IS pathogenesis, this study aimed to elucidate the effects of triolein in IS and investigate its mechanism of action.MethodsWe evaluated the impact of triolein using both in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) and in vivo middle cerebral artery occlusion (MCAO/R) models. Neurological function and cerebral infarct volume were assessed 72 h post-reperfusion. Autophagy was quantified through monodansyl cadaverine (MDC) labeling of autophagic vesicles and Western blot analysis of autophagy-related proteins. Microglial activation was visualized via immunofluorescence, while inflammatory cytokine expression was quantified using RT-qPCR. The cytoprotective effect of triolein on OGD/R-induced HT22 cells was evaluated using Cell Counting Kit-8 and lactate dehydrogenase release assays. The involvement of the Protein kinase B/Mechanistic target of rapamycin kinase (AKT/mTOR) pathway was assessed through Western blot analysis.ResultsTriolein administration significantly reduced infarct volume, enhanced neurological recovery, and attenuated M1 microglial activation and inflammation in MCAO/R-induced mice. Western blot analysis and MDC labeling revealed that triolein exerted an inhibitory effect on post-IS autophagy. Notably, in the BV2-induced OGD/R model, triolein demonstrated an autophagy-dependent suppression of the inflammatory response. Furthermore, triolein inhibited the activation of the AKT/mTOR signaling pathway, consequently attenuating autophagy and mitigating the post-IS inflammatory response.ConclusionsThis study provides novel evidence that triolein exerts neuroprotective effects by inhibiting post-stroke inflammation through an autophagy-dependent mechanism. Moreover, the modulation of the AKT/mTOR signaling pathway appears to be integral to the neuroprotective efficacy of triolein. These findings elucidate potential therapeutic strategies for IS management and warrant further investigation.Graphical abstractGraphical abstract was created with BioRender.com
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.