Abstract

Compounds that modulate the synthesis of gibberellin (GA) can also enhance resistance to abiotic stress in treated plants. Seed treatments of 600 ppm trinexapac-ethyl (TE), which inhibits GA synthesis by blocking the transformation of GA20 to GA1 and foliar applications of 15 ppm paclobutrazol (Paclo), which inhibits the oxidation of ent-kaurene to kaurenoic acid, were applied separately or together to three varieties of hot pepper (Capsicum annuum L.) that are popular in Thailand. Greenhouse-grown plants were subjected to 7-10 days of drought, and then rewatered before transfer to a screenhouse. Khee Noo (an upright “bird type” pepper) was most sensitive to drought, compared to Bang Chang and Hot (“cayenne type”). In all varieties, both Paclo and TE treatments reduced the height of irrigated plants, but led to the retention of both plant size and pepper yield in droughted plants, compared to either irrigated plants or to untreated droughted plants. Treatment with Paclo provided the greatest retention of leaf relative water content (RWC) under drought conditions, with no advantage to the combination Paclo+TE treatment. Only Paclo treatment increased leaf thickness in Bang Chan and Hot, whereas both Paclo and TE had similar effects on increasing leaf thickness in Khee Noo. Khee Noo was the variety most responsive to Paclo or TE treatments, with increases in leaf thickness, epicuticular wax, and leaf pigments, all of which may better allow the plants to survive stress by storing leaf moisture, enhancing photosynthesis (chlorophyll), and preventing oxidative injury (carotenoids). Electrolyte leakage, indicative of membrane permeability and thus of susceptibility to stress, was diminished by 25% to 33% in leaves from plants treated with Paclo or TE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call