Abstract

Detection and analysis of volatile organic compounds' (VOCs) biomarkers lead to improvement in healthcare diagnosis and other applications such as chemical threat detection and food quality control. Here, we report on tri-molybdenum phosphide (Mo3P) and multiwalled carbon nanotube (MWCNT) junction-based vapor quantum resistive sensors (vQRSs), which exhibit more than one order of magnitude higher sensitivity and superior selectivity for biomarkers in comparison to pristine MWCNT junctions based vQRSs. Transmission electron microscope/scanning tunneling electron microscope with energy dispersive x-ray spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy studies reveal the crystallinity and the presence of Mo and P elements in the network. The presence of Mo3P clearly enhanced the performance of vQRS as evidenced in sensitivity and selectivity studies. The vQRSs are stable over extended periods of time and are reproducible, making them a potential candidate for sensing related applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call