Abstract

Aluminum matrix composites (AMCs) with hetero-grains exhibit high strength with good ductility. A trimodal grain structure composed of ultrafine grains (UFGs), fine grains (FGs) and coarse grains (CGs) prevents the pre-mature cracking of hetero-zone boundaries in conventional bimodal grain structures; thus, it is favored by AMCs. However, the design of the size and distribution of hetero-domains in trimodal AMCs is tough, with complicated multi-scale deformation mechanisms. This study tunes the distribution of FG domains elaborately via altering the volume fraction of FG from 10 vol.% to 60 vol.% and investigates the distribution effect of FG domains on strength–ductility synergy. The optimized 2024 Al matrix composites with 30 vol.% FG exhibited a tensile strength of over 700 MPa and an elongation of 7.5%, respectively, realizing a good combination of high strength and ductility. This work enlightens the heterostructure design with a balance between heterogeneous deformation induced (HDI) strain hardening and high-content soft phase induced strain homogenization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.