Abstract

Approximate solutions of the non-linear Boltzmann equation, which have the structure of the linear combination of three global Maxwellians with arbitrary hydrodynamical parameters, are considered. Some sufficient conditions which allow the error between the left- and the right-hand sides of the equation tend to zero, and which are calculated either in the mixed metric or in the pure integral metric, are obtained. The class of the distributions, which minimized this error for the arbitrary Knudsen number, is found. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.