Abstract

Glycoengineering has provided powerful tools to construct site-specific antibody conjugates. However, only small-molecule payloads can be directly transferred to native or engineered antibodies using existing glycoengineering strategies. Herein, we demonstrate that reducing the complexity of crystallizable fragment (Fc) glycans could dramatically boost the chemoenzymatic modification of immunoglobulin G (IgG) via an engineered fucosyltransferase. In this platform, antibodies with Fc glycans engineered to a simple N-acetyllactosamine (LacNAc) disaccharide are successfully conjugated to biomacromolecules, such as oligonucleotides and nanobodies, in a single step within hours. Accordingly, we synthesized an antibody-conjugate-based anti-human epidermal growth factor receptor 2 (HER2)/ cluster of differentiation 3 (CD3) bispecific antibody and used it to selectively destroy patient-derived cancer organoids by reactivating endogenous T lymphocyte cells (T cells) inside the organoid. Our results highlight that this platform is a general approach to construct antibody-biomacromolecule conjugates with translational values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.