Abstract

To better understand why amines catalyze the reactivity of SiOH with silanes, we examined the adsorption of trimethylamine under a low pressure (10–9–10–8 mbar) and a low temperature (105–160 K) on water-terminated (H,OH)-Si(001), which is both a model surface for adsorption studies and a promising starting substrate for atomic layer deposition. Trimethylamine bonding configurations were determined by combining real-time synchrotron radiation X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS) with density functional theory (DFT) calculations of core-level ionization energies and vibrational spectra. Both spectroscopies showed that the majority of species are trimethylamine molecules making acceptor H bonds with surface hydroxyls. Moreover, HREELS indicated that the hydrogen-bonding modes (single and double hydrogen acceptor bonds) depend on temperature and/or coverage, which may in turn affect the weakening of the O–H bond, and hence the catalytic effects of trimethylamine. XPS also clearly detected a minority species, trimethylamine, datively bonded to the isolated silicon dangling bonds (a few 1/100th of a monolayer). This species is prone to breaking, and a detailed analysis of the reaction products was made. The reactivity of the electrically active isolated silicon dangling bonds with the amine may impact the Fermi-level position in the gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.