Abstract
Due to their exceptional chemical and thermal stabilities as well as electrically insulating property, atomically thin hexagonal boron nitride (h-BN) films have been identified as a promising class of dielectric substrate and encapsulation material for high-performance two-dimensional (2D) heterostructure devices. Herein, we report a facile chemical vapor deposition synthesis of large-area atomically thin h-BN including monolayer single crystals and C-doped h-BN (h-BCN) films utilizing a relatively low-cost, commercially available trimethylamine borane (TMAB) as a single-source precursor. Importantly, pristine 2D h-BN films with a wide band gap of ∼6.1 eV can be achieved by limiting the sublimation temperature of TMAB at 40 °C, while C dopants are introduced to the h-BN films when the sublimation temperature is further increased. The h-BCN thin films displayed band gap narrowing effects as identified by an additional shoulder at 205 nm observed in their absorbance spectra. Presence of N–C bonds in the h-B...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.