Abstract
To improve the cycling performance of graphite anode materials, we propose a functional electrolyte additive, trimethoxymethylsilane (TMSi), which contains a silyl ether functional group as part of its molecular structure. First principal calculation studies, in addition to ex situ analyses, demonstrated that electrochemical reduction of ethylene carbonate (EC) gives an anionic reduced EC product. Subsequent chemical reaction with TMSi then generates solid-electrolyte interphase (SEI) layers of Si–O and Si–C functionalized carbonate on the surface of the graphite anode, which prolongs and stabilizes the cycling performance of the cells. As a result, the cell cycled with TMSi-controlled electrolyte exhibits a cycling retention of 89.5%, whereas the cell cycled with standard electrolyte suffers from poor cycling retention (84.3%) after 100 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.