Abstract

Persistent microbial infection promotes the fusion of several kinds of somatic cells, such as macrophages and endothelial cells, leading to the formation of multinucleated giant cells (MGCs). However, the molecular mechanisms of MGCs formation are still poorly understood. By laser confocal microscope, we discovered that TRIM34 increased the efficiency of cell fusion in Human Embryonic Kidney cells (HEK293T). By means of DiD cell membrane probes, LysoTracker Deep Red or MitoTracker Deep Red staining, we also demonstrated that TRIM34 stimulated cell fusion in paraformaldehyde fixed or living HEK293T cells. Moreover, we discovered that the nuclei shapes of MGCs induced by TRIM34 were diversiform, such as horseshoe shape, ring like shape etc. Through 3D reconstruction of confocal z-stacks images, we found that TRIM34-EGFP proteins could form macromolecule aggregates in the central area of MGCs, while the nuclei were arranged in ring like shape and distributed around the plasma membrane. Cell fusion assay showed that cocultured TRIM34-EGFP+ cells and TRIM34-DsRed1+ cells could fuse to form MGCs. We speculate that the formation of MGCs can be divided into two phase: primary multinucleated cells (PMCs) and secondary multinucleated cells (SMCs). Firstly, TRIM34 induced fusion of multiple adjacent cells resulting in PMCs formation, and then PMCs were endowed with the capacity of phagocytosis and turned into SMCs. Collectively, these results suggest that TRIM34 proteins contribute to the formation of MGCs by promoting cell fusion and phagocytosis in epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call