Abstract

Pulmonary arterial hypertension (PAH) is a progressive and fetal cardiovascular disease. Tripartite motif 32 (TRIM32) is a member of TRIM family that has been found to be involved in cardiovascular disease. However, the role of TRIM32 in PAH remains unclear. Here we investigated the effects of TRIM32 on hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) in vitro. Our results showed that TRIM32 protein level in the plasma samples from PAH patients was decreased as compared with healthy volunteers. Exposure to hypoxia condition caused a significant decrease in TRIM32 expression in PASMCs. Overexpression of TRIM32 inhibited hypoxia-induced proliferation and migration of PASMCs. TRIM32 overexpression elevated the increased apoptotic rate and caspase-3 activity in hypoxia-induced PASMCs. Moreover, overexpression of TRIM32 reversed hypoxia-induced down-regulation of myocardin, SM 22 and calponin, as well as up-regulation of osteopontin (OPN). Whereas, TRIM32 knockdown shwed the opposite effect. Furthermore, overexpression of TRIM32 inhibited hypoxia-induced activation of PI3K/Akt with decreased phosphorylated level of PI3K and Akt. Additionally, activation of PI3K/Akt by IGF-1 treatment reversed the effects of TRIM32 on hypoxia-induced PASMCs. In conclusion, these findings indicated that TRIM32 was involved in the development of PAH through regulating the proliferation, migration, apoptosis and dedifferentiation of PASMCs, which might be mediated by the PI3K/Akt signaling pathway. Thus, TRIM32 might be a potential target for PAH treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call