Abstract

To investigate the specific role of TRIM29 in colon cancer progression, bioinformatic analysis was performed on TRIM29. Colon cancer tissues were collected and colon cancer cells were cultured for further experiments. Cell viability and proliferation were determined using CCK-8, colony formation, and EDU staining assays. The mRNA and protein levels of TRIM29 and KRT5 were determined using quantitative real-time PCR and western blotting, respectively. The interaction between TRIM29 and KRT5 was detected using a co-immunoprecipitation (CO-IP) assay. Cycloheximide treatment was performed to analyse the stability of KRT5. TRIM29 was upregulated in colon cancer tissues and cells. TRIM29 knockdown decreased the cell viability and proliferation and ubiquitination levels of KRT5 and enhanced the protein stability and expression of KRT5. The CO-IP assay confirmed that TRIM29 and KRT5 binded to each other. KRT5 knockdown neutralises the inhibitory effect of sh-TRIM29 on colon cancer cell growth and TRIM29 knockdown prevented the proliferation of colon cancer cells by decreasing ubiquitination of KRT5, which enhanced the protein stability and expression of KRT5 in cancer cells. Thus, targeting TRIM29-mediated ubiquitination levels of KRT5 might be a new direction for colon cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.