Abstract
Herpesviruses are ubiquitous DNA viruses that can establish latency and cause a range of mild to life-threatening diseases in humans. Upon infection, herpesviruses trigger the activation of several host antiviral defense programs that play critical roles in curbing virus replication and dissemination. Recent work from many groups has integrated our understanding of TRIM (tripartite motif) proteins, a specific group of E3 ligase enzymes, as pivotal orchestrators of mammalian antiviral immunity. In this review, we summarize recent advances in the modulation of innate immune signaling by TRIM proteins during herpesvirus infection, with a focus on the detection of herpes simplex virus type 1 (HSV-1, a prototype herpesvirus) by cGAS-STING, RIG-I-like receptors, and Toll-like receptors. We also review the latest progress in understanding the intricate relationship between herpesvirus replication and TRIM protein-regulated autophagy and apoptosis. Finally, we discuss the maneuvers used by HSV-1 and other herpesviruses to overcome TRIM protein-mediated virus restriction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.