Abstract
Muscular dystrophy represents a major unmet medical need; only palliative treatments exist for this group of debilitating diseases. Because multiple forms of muscular dystrophy arise from compromised sarcolemmal membrane integrity, a therapeutic approach that can target this loss of membrane function could be applicable to a number of these distinct diseases.One promising therapeutic approach involves the process the cell uses to repair injuries to the plasma membrane. Recent discoveries of genes associated with the membrane repair process provide an opportunity to promote this process as a way to treat muscular dystrophy. One such gene is mitsugumin 53 (MG53), a member of the tripartite motif (TRIM) family of proteins (TRIM72), which is an essential component of the membrane repair pathway in muscle. Recent results indicate that MG53/TRIM72 protein can be directly applied as a therapeutic agent to increase membrane repair capacity of many cell types and treat some aspects of the disease in mouse models of muscular dystrophy. There is great potential for the use of recombinant human MG53 in treating muscular dystrophy and other diseases in which compromised membrane integrity contributes to the disease. Other TRIM family proteins may provide additional targets for therapeutic intervention in similar disease states.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.