Abstract

This paper investigates aeroelastic tailoring and optimal trailing edge control surface deflection to minimize induced drag for a HALE UAV flying wing configuration. The analysis process is conducted on the Finite Element(FE) model of a composite slender wing. Genetic Algorithm(GA) is employed to aeroelastically tailor the wing by setting the composite ply orientation. The study examined conformal and traditional flaps and explored two optimization formulations to minimize drag. The impacts of the conformal control surface are recognized as required deflection saving which can be translated to drag reduction. The results also show that the control demands for the optimal trim can be further reduced if the wing is properly tailored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.