Abstract

This paper describes a method for estimating a set of spatial components (brain maps) and temporal components (waveforms) of brain potentials. These components play the role of bases of a coordinate system, in the sense that the brain potentials of any subject can be represented as superpositions of these components. The representation is unique given the spatial and temporal components, and this decomposition is particularly appealing for comparing the brain potentials of different subjects (say alcoholics and controls). It can also be used for single trial modeling, clinical classification of patients, and data filtering. The method is based on the topographic component model (TCM, Möcks 1988) which models brain potentials in a trilinear form. We extend the TCM in two aspects. First, the diagonal amplitude matrix is replaced by a general loading matrix based on some neurophysiological considerations. Secondly, the number of spatial components and the number of temporal components can be different. The spatial components and temporal components are obtained respectively by performing singular value decomposition (SVD). This method is illustrated with visual P3 data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.