Abstract

Over the past few decades, advances in various nanophotonic structures to enhance light-matter interactions have opened numerous opportunities for biosensing applications. Beyond the successful development of label-free nanophotonic biosensors that utilize plasmon resonances in metals and Mie resonances in dielectrics, simpler structures are required to achieve improved sensor performance and multifunctionality, while enabling cost-effective fabrication. Here, we present a simple and effectual approach to colorimetric biosensing utilizing a trilayered Gires-Tournois (GT) resonator, which provides a sensitive slow-light effect in response to low refractive index (RI) substances and thus enables to distinguish low RI bioparticles from the background with spatially distinct color differences. For low RI sensitivity, by impedance matching based on the transmission line model, trilayer configuration enables the derivation of optimal designs to achieve the unity absorption condition in a low RI medium, which is difficult to obtain with the conventional GT configuration. Compared to conventional bilayered GT resonators, the trilayered GT resonator shows significant sensing performance with linear sensitivity in various situations with low RI substances. For extended applications, several proposed designs of trilayered GT resonators are presented in various material combinations by impedance matching using equivalent transmission line models. Further, comparing the color change of different substrates with low RI NPs using finite-difference time-domain (FDTD) simulations, the proposed GT structure shows surpassing colorimetric detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.