Abstract
<p><span>Localization in wireless sensor networks (WSNs) is essential in many applications like target tracking, military applications and environmental monitoring. Anchors which are equipped with global positioning system (GPS) facility are useful for finding the location information of nodes. These anchor nodes may be static or dynamic in nature. In this paper, we propose mobile anchors assisted localization algorithm based on regular hexagons in two-dimensional WSNs. We draw a conclusion that the number of anchor nodes greatly affect the performance of localization in a WSN. An optimal number of anchor nodes significantly reduces the localization error of unknown nodes and also guarantees that unknown nodes can obtain high localization accuracy. Because of the mobility of anchor nodes high volume of sensing region is covered with less period of time and hence the coverage ratio of the proposed algorithm increases. Number of communications also decreases for the reason that the system contains log<sub>e</sub> (n) number of anchor nodes which leads to less energy consumption at nodes. Simulation results show that our LUMAT algorithm significantly outperforms the localization method containing single anchor node in the network. Movement trajectories of mobile anchors should be designed dynamically or partially according to the observable environment or deployment situations to make full use of real-time information during localization. This is the future research issue in the area of mobile anchor assisted localization algorithm.</span></p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advances in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.