Abstract

Cross-domain joint segmentation of optic disc and optic cup on fundus images is essential, yet challenging, for effective glaucoma screening. Although many unsupervised domain adaptation (UDA) methods have been proposed, these methods can hardly achieve complete domain alignment, leading to suboptimal performance. In this paper, we propose a triple-level alignment (TriLA) model to address this issue by aligning the source and target domains at the input level, feature level, and output level simultaneously. At the input level, a learnable Fourier domain adaptation (LFDA) module is developed to learn the cut-off frequency adaptively for frequency-domain translation. At the feature level, we disentangle the style and content features and align them in the corresponding feature spaces using consistency constraints. At the output level, we design a segmentation consistency constraint to emphasize the segmentation consistency across domains. The proposed model is trained on the RIGA+ dataset and widely evaluated on six different UDA scenarios. Our comprehensive results not only demonstrate that the proposed TriLA substantially outperforms other state-of-the-art UDA methods in joint segmentation of optic disc and optic cup, but also suggest the effectiveness of the triple-level alignment strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.