Abstract

Thyroid hormones influence growth and differentiation of bone cells. In vivo and in vitro data indicate their importance for development and maintenance of the skeleton. Triiodothyronine (T3) inhibits proliferation and accelerates differentiation of osteoblasts. We studied the regulatory effect of T3 on markers of proliferation as well as on specific markers of the osteoblastic phenotype in cultured MC3T3-E1 cells at different time points. In parallel to the inhibitory effect on proliferation, T3 down-regulated histone H4 mRNA expression. Early genes (c-fos/c-jun) are highly expressed in proliferating cells and are down-regulated when the cells switch to differentiation. When MC3T3-E1 cells are cultured under serum-free conditions, basal c-fos/c-jun expressions are nearly undetectable. Under these conditions, c-fos/c-jun mRNAs can be stimulated by EGF, the effect of which is attenuated to about 46% by T3. In addition, T3 stimulated the expression at the mRNA and protein level of osteocalcin, a marker of mature osteoblasts and alkaline phosphatase activity. All these effects were more pronounced when cells were cultured for more than 6 days. These data indicate that T3 acts as a differentiation factor in osteoblasts by influencing the expression of cell cycle-regulated, of cell growth-regulated, and of phenotypic genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.