Abstract

Triheptanoin is an odd-chain triglyceride with anaplerotic properties-that is, replenishing the pool of metabolic intermediates in the Krebs cycle. Unlike even-chain fatty acids metabolized to acetyl-CoA only, triheptanoin can indeed provide both acetyl-CoA and propionyl-CoA, two key carbon sources for the Krebs cycle. Triheptanoin was initially used in patients with long-chain fatty acid oxidation disorders. The first demonstration of the possible benefit of triheptanoin for brain energy deficit came from a patient with pyruvate carboxylase deficiency, a severe metabolic disease that affects anaplerosis in the brain. In an open-label study, triheptanoin was then shown to decrease nonepileptic paroxysmal manifestations by 90% in patients with glucose transporter 1 deficiency syndrome, a disease that affects glucose transport into the brain. 31 P magnetic resonance spectroscopy studies also indicated that triheptanoin was able to correct bioenergetics in the brain of patients with Huntington disease, a neurodegenerative disease associated with brain energy deficit. Altogether, these studies indicate that triheptanoin can be a treatment for brain energy deficit related to altered anaplerosis and/or glucose metabolism. © 2017 Wiley Periodicals, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call