Abstract

Trihelix proteins are plant-specific transcription factors that play crucial roles in plant development and stress responses. However, the involvement of trihelix proteins in fruit ripening and transcriptional regulatory mechanisms remains largely unclear. In this study, we cloned a trihelix gene SlGT31, whose relative expression was significantly induced by the application of exogenous ethylene but repressed by 1-methylcyclopropene (1-MCP). Suppression of SlGT31 resulted in delayed fruit ripening, decreased accumulation of total carotenoids and ethylene content, and inhibition of relative expression of genes related to ethylene and fruit ripening. Conversely, the opposite results were observed in SlGT31-overexpression lines. Yeast one-hybrid and dual-luciferase assays suggested that SlGT31 could bind to the promoters of two key ethylene biosynthesis genes ACO1 and ACS4. These results indicate that SlGT31 may act as a positive modulator during fruit ripening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call