Abstract
A new family of modified two-derivative Runge-Kutta-Nyström (TDRKN) methods are proposed for solving initial value problems of second-order oscillatory ordinary differential equations. Order conditions are obtained via the Nyström tree theory and the B-series theory. Trigonometric fitting conditions are derived. Two practical explicit trigonometrically fitted TDRKN (TFTDRKN) methods are constructed. The phase properties of the new integrators are examined and their periodicity regions are obtained. The results of numerical experiments show the efficiency and competence of the new methods compared with some highly efficient codes in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.