Abstract
A trigonometric quintic B-spline method is proposed for the solution of a class of turning point singularly perturbed boundary value problems (SP-BVPs) whose solution exhibits either twin boundary layers near both endpoints of the interval of consideration or an interior layer near the turning point. To resolve the boundary/interior layer(s) trigonometric quintic B-spline basis functions are used with a piecewise-uniform mesh generated with the help of a transition parameter that separates the layer and regular regions. The proposed method reduces the problem into a system of algebraic equations which can be written in matrix form with the penta-diagonal coefficient matrix. The well-known fast penta-diagonal system solver algorithm is used to solve the system. The method is shown almost fourth-order convergent irrespective of the size of the diffusion parameter ϵ. The theoretical error bounds are verified by taking some relevant test examples computationally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.