Abstract
This paper extends previous work on approximation of loops to the case of special orthogonal groups SO(N), N≥3. We prove that the best approximation of an SO(N) loop Q(t) belonging to a Holder class Lip α , α>1, by a polynomial SO(N) loop of degree ≤n is of order $\mathcal{O}(n^{-\alpha+\epsilon})$ for n≥k, where k=k(Q) is determined by topological properties of the loop and e>0 is arbitrarily small. The convergence rate is therefore e-close to the optimal achievable rate of approximation. The construction of polynomial loops involves higher-order splitting methods for the matrix exponential. A novelty in this work is the factorization technique for SO(N) loops which incorporates the loops’ topological aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.