Abstract
We have created a set of P-element excision-derived Gpdh alleles that generate a range of GPDH activity phenotypes ranging from zero to full activity. By placing these synthetic alleles in isogenic backgrounds, we characterize the effects of minor and major activity variation on two different aspects of Gpdh function: the standing triglyceride pool and glycerol-3-phosphate shuttle-assisted flight. We observe small but statistically significant reductions in triglyceride content for adult Gpdh genotypes possessing 33-80% reductions from normal activity. These small differences scale to a notable proportion of the observed genetic variation in triglyceride content in natural populations. Using a tethered fly assay to assess flight metabolism, we observed that genotypes with 100 and 66% activity exhibited no significant difference in wing-beat frequency (WBF), while activity reductions from 60 to 10% showed statistically significant reductions of approximately 7% in WBF. These studies show that the molecular polymorphism associated with GPDH activity could be maintained in natural populations by selection in the triglyceride pool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.