Abstract

Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.

Highlights

  • The lifespan of circulating erythrocytes is limited by senescence to 100–120 days [1,2,3]

  • Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface

  • Eryptosis is triggered by a wide variety of xenobiotics

Read more

Summary

Introduction

The lifespan of circulating erythrocytes is limited by senescence to 100–120 days [1,2,3]. In senescent erythrocytes hemichromes bind to and cluster the anion exchanger protein band 3 (AE1), leading to attachment of complement C3 fragments and antiband 3 immunoglobulins [4]. Erythrocytes may enter suicidal death or eryptosis, characterized by erythrocyte shrinkage and cell membrane scrambling with translocation of phosphatidylserine from the inner leaflet of the cell membrane to the erythrocyte surface [5, 6]. Phosphatidylserine avidly binds annexin V, which is employed to identify eryptotic cells [5, 6]. The reader is encouraged to study earlier reviews on further aspects of eryptosis [6,7,8,9,10,11,12]

Triggers and Inhibitors of Eryptosis
Signaling Regulating Eryptosis
Significance of Eryptosis
Diseases Associated with Enhanced Eryptosis
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call