Abstract

In this work, we report the successful synthesis of large scale hexagonal boron nitride films with controllable atomic layers. The films are grown on thin nickel foils via ambient pressure chemical vapor deposition with borazine as the precursor. The atomic layers of h-BN films can be controlled in a narrow range by adjusting growth time and the cooling rates. Transmission electron microscope results shows the h-BN films exhibit high uniformity and good crystalline. X-ray photoelectron spectroscopy shows the B/N elemental ratio is about 1.01. The h-BN films exhibit a pronounced deep ultraviolet absorption at 203.0 nm with a large optical band gap of 6.02 ± 0.03 eV. The results suggest potential applications of h-BN films in deep ultraviolet and dielectric materials. Growth mechanisms of h-BN films with thickness control are discussed, especially when the synthesized h-BN films after a higher cooling rate show an in-plane rotation angle between bilayers. Both epitaxial growth and diffusion-segregation process are involved in the synthesis of bilayer h-BN films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.