Abstract

Chorus emissions are triggered from the linear cyclotron instability driven by the temperature anisotropy of energetic electrons (10-100 keV) in the magnetosphere. Chorus emissions grow as an absolute nonlinear instability near the magnetic equator due to the presence of an electromagnetic electron hole in velocity space. The transition process from the linear wave growth at a constant frequency to the nonlinear wave growth with a rising tone frequency is due to formation of a resonant current - J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> anti-parallel to the wave magnetic field. The rising-tone frequency introduces a phase shift to the electron hole at the equator, and results in a resonant current component anti-parallel to the wave electric field - J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</sub> , which causes the nonlinear wave growth. To confirm this triggering mechanism, we perform Vlasov Hybrid Simulations with J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> and without J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> . The run without J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> does not reproduce chorus emissions, while the run with J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> does successfully reproduce chorus emissions. The nonlinear frequency shift ω <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> due to J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</sub> plays a critical role in the triggering process. The nonlinear transition time T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</sub> for the frequency shift is found to be of the same order as the nonlinear trapping period, which is confirmed by simulations and observation. The established frequency sweep rate is ω <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> /T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</sub> , which gives an optimum wave amplitude of chorus emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call