Abstract
Magnetic polymersomes were prepared by self-assembly of the amphiphilic block copolymer poly(isoprene-b-N-isopropylacrylamide) with monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPION). The specifically designed thermoresponsive block copolymer allowed for efficient incorporation of the hydrophobic nanoparticles in the membrane core and encapsulation of the water soluble dye calcein in the lumen of the vesicles. Magnetic heating of the embedded SPIONs led to increased bilayer permeability through dehydration of the thermoresponsive PNIPAM block. The entrapped calcein could therefore be released in controlled doses solely through exposure to pulses of an alternating magnetic field. This hybrid SPION-polymersome system demonstrates a possible direction for release applications that merges rational polymersome design with addressed external magnetic field-triggered release through embedded nanomaterials.
Highlights
Amphiphilic diblock copolymers with hydrophilic volume fractions around 30%–50% v/v spontaneously self-assemble into vesicular spherical structures with bilayer membranes [1,2,3,4]
The control over permeability of the vesicles in this study is obtained through magneto-thermal actuation, by which an alternating magnetic field locally produces heat through its interaction with the superparamagnetic iron oxide nanoparticles embedded in the polymersome membranes
The size and stability of the assemblies are suitable for nanoscale encapsulation and release applications
Summary
Amphiphilic diblock copolymers with hydrophilic volume fractions around 30%–50% v/v spontaneously self-assemble into vesicular spherical structures with bilayer membranes [1,2,3,4]. Such polymersomes have received rapidly increased attention since they offer an improved and designable alternative to liposomes for encapsulation and release applications such as delivery of bioactive compounds in vivo and in vitro [5,6,7,8,9]. This is achieved by including stimuli-responsive units into the vesicle membrane that break down the membrane integrity upon the stimulus
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.