Abstract
We study patterns that arise in the wake of an externally triggered, spatially propagating instability in the complex Ginzburg–Landau equation. We model the trigger by a spatial inhomogeneity moving with constant speed. In the comoving frame, the trivial state is unstable to the left of the trigger and stable to the right. At the trigger location, spatio-temporally periodic wave trains nucleate. Our results show existence of coherent, “heteroclinic” profiles when the speed of the trigger is slightly below the speed of a free front in the unstable medium. Our results also give expansions for the wavenumber of wave trains selected by these coherent fronts. A numerical comparison yields very good agreement with observations, even for moderate trigger speeds. Technically, our results provide a heteroclinic bifurcation study involving an equilibrium with an algebraically double pair of complex eigenvalues. We use geometric desingularization and invariant foliations to describe the unfolding. Leading-order terms are determined by a condition of oscillations in a projectivized flow, which can be found by intersecting absolute spectra with the imaginary axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.