Abstract

Using the multi-wavelength images and the photospheric magnetograms from the \emph{Solar Dynamics Observatory}, we study the flare which was associated by the only one coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of AR instead of in the core region. The flare was close to the apparently "open" fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and "open" fields, the flare became an eruptive flare, leading to the CME. Then at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution H$\alpha$ data from the New Vacuum Solar Telescope at the \emph{Fuxian Solar Observatory}, we investigate the interaction between the second filament and the nearby "open" lines. The filament reconnected with the "open" lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the "open" system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers, and was eventually spread by the CME to the interplanetary space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call