Abstract
Torrential processes like fluvial flows (flash floods with or without intensive sediment transport) and debris flows can represent a threat to people and infrastructure in alpine domains. Up to now the hydro-meteorological trigger conditions and their connection with geomorphic watershed characteristics that favor the initiation of either process are largely unknown. Based on modeled wetness states we determined the trigger types (long-lasting rainfall (LLR), short-duration storm (SDS) and intense snow melt (SM)) of 360 observed debris flow and fluvial flood events in six climatically and geomorphologically contrasting watersheds in Austria. Results show that the watershed wetness states play very distinct roles for triggering torrential events across the study regions. Hydro-meteorological variables have little power to explain the occurrence of fluvial flows and debris flows in these regions. Nevertheless, trigger type separation highlighted some geomorphic influences. For example, intense SM triggered more events in sub-watersheds (torrential watersheds in the study region) that are characterized by significantly higher Melton ruggedness numbers than LLR does. In addition, the data show that events triggered by LLRs occur in sub-watersheds of similar exposures (aspects) other than SDS. The results suggest that the consideration of different trigger types provides valuable information for engineering risk assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.