Abstract
Reflex blinks provide a model system for investigating motor learning in normal and pathological states. We investigated whether high-frequency stimulation (HFS) of the supraorbital branch of the trigeminal nerve before the R2 blink component (HFS-B) decreases reflex blink gain in alert rats. As with humans (Mao JB, Evinger C. J Neurosci 21: RC151, 2001), HFS-B significantly reduced blink size in the first hour after treatment for rats. Repeated days of HFS-B treatment produced long-term depression of blink circuits. Blink gain decreased exponentially across days, indicating a long-term depression of blink circuits. Additionally, the HFS-B protocol became more effective at depressing blink amplitude across days of treatment. This depression was not habituation, because neither long- nor short-term blink changes occurred when HFS was presented after the R2. To investigate whether gain modifications produced by HFS-B involved cerebellar networks, we trained rats in a delay eyelid conditioning paradigm using HFS-B as the unconditioned stimulus and a tone as the conditioned stimulus. As HFS-B depresses blink circuits and delay conditioning enhances blink circuit activity, occlusion should occur if they share neural networks. Rats acquiring robust eyelid conditioning did not exhibit decreases in blink gain, whereas rats developing low levels of eyelid conditioning exhibited weak, short-term reductions in blink gain. These results suggested that delay eyelid conditioning and long-term HFS-B utilize some of the same cerebellar circuits. The ability of repeated HFS-B treatment to depress trigeminal blink circuit activity long term implied that it may be a useful protocol to reduce hyperexcitable blink circuits that underlie diseases like benign essential blepharospasm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.