Abstract
AbstractThe advancement of renewable energy is intricately relied on the development of diverse sustainable electrochemical devices. Persuing exceptionally efficient multifunctional electrocatalysts is imperative, as it promises to significantly streamline the electrode fabrication process, thereby enhancing the overall effectiveness of these devices. Herein, a trifunctional electrocatalysts of N‐doped carbon (NC) supported intermetallic PtZn catalyst (PtZn‐IMC@NC) are reported, which performs highly attractively toward the electrocatalysis of glycerol oxidation reactions (GOR), oxygen reduction reactions (ORR), and hydrogen evolution reactions (HER). Its effectiveness are demonstrated as electrocatalysts for both the anode and cathode in a hybrid acid/alkali direct glycerol fuel cell (AA‐DGFC) and a hybrid acid/alkali glycerol‐hydrogen electrolyzer (AA‐GHEC). The AA‐DGFC can release an impressive peak power density of 286.8 mW cm−2, while the AA‐GHEC achieves a noteworthy current density of 100 mA cm−2 at a significantly low applied voltage of 0.47 V. Such intermetallic PtZn‐based trifunctional electrocatalyst empowers them to establish a self‐powered integrated electrochemical device with the AA‐DGFC driving the AA‐GHEC. This setup exemplifies efficient valorization of glycerol into formate in both cells and hydrogen production in electrolyzer device. This study sparks innovation across diverse applications of multifunctional electrocatalysts and infuses renewed momentum into the realm of advanced energy devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.