Abstract
BackgroundMaterial degradation is a major issue that has been the subject of intense research and investigation by the scientific community. It has harmful consequences that require serious and careful intervention. However, restrictions on the use of inhibitors containing toxic compounds pose a significant challenge to the implementation of effective corrosion treatments. This has necessitated a continuous search for new and innovative ways to protect against material damage. Plant-derived natural inhibitors offer several advantages, including potent inhibitory effects, lack of toxicity, biodegradability, and environmentally sustainable origins. The purpose of this research was to evaluate the corrosion resistance of API5LX60 carbon steel in a 3.5 % NaCl environment using Trifolium repens as an environmentally friendly inhibitor. MethodsThe inhibitor extract was analysed using Fourier Transform Infrared (FTIR) spectroscopy. However, gravimetry and electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)) were used to investigate the corrosion behaviour. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to examine the surface morphology. Significant findingsAfter testing a range of concentrations in a 3.5 % NaCl medium, the highest level of inhibition (98 %) was obtained at 20 ppm, confirming the mixed action of the inhibitor with predominantly cathodic action. The inhibition mechanism involved physical adsorption on metal surfaces according to the Langmuir model, which enhances the corrosion-inhibiting ability; the extract forms a protective layer that successfully inhibits corrosion, as confirmed through electrochemical and surface analysis. These results demonstrate that the extract acts as a potent anticorrosive agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Taiwan Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.