Abstract

A major barrier to the use of nitrogen-fixing inoculum strains for the enhancement of legume productivity is the inability of commercially available strains to compete with indigenous rhizobia for nodule formation. Despite extensive research on nodulation competitiveness, there are no examples of field efficacy studies of strains that have been genetically improved for nodulation competitiveness. We have shown previously that production of the peptide antibiotic trifolitoxin (TFX) by Rhizobium etli results in significantly increased nodule occupancy values in nonsterile soil in growth chamber experiments (E. A. Robleto, A. J. Scupham, and E. W. Triplett, Mol. Plant-Microbe Interact. 10:228-233, 1997). To determine whether TFX production by Rhizobium etli increases nodulation competitiveness in field-grown plants, seeds of Phaseolus vulgaris were inoculated with mixtures of Rhizobium etli strains at different ratios. The three nearly isogenic inoculum strains used included TFX-producing and non-TFX-producing strains, as well as a TFX-sensitive reference strain. Data was obtained over 2 years for nodule occupancy and over 3 years for assessment of the effect of the TFX production phenotype on grain yield. In comparable mixtures in which the test strain accounted for between 5 and 50% of the inoculum, the TFX-producing strain exhibited at least 20% greater nodule occupancy than the non-TFX-producing strain in both years. The TFX production phenotype had no effect on grain yield over 3 years; the average yields reached 2,400 kg/ha. These results show that addition of the TFX production phenotype significantly increases nodule occupancy under field conditions without adverse effects on grain yield. As we used common inoculation methods in this work, there are no practical barriers to the commercial adoption of the TFX system for agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.