Abstract

Ni-mediated trifluoromethylation of an aryl-Br bond in model macrocyclic ligands (Ln -Br) has been thoroughly studied, starting with an oxidative addition at Ni0 to obtain well-defined aryl-NiII -Br complexes ([Ln -NiII ]Br). Abstraction of the halide with AgX (X=OTf- or ClO4- ) thereafter provides [Ln -NiII ](OTf). The nitrate analogue has been obtained through a direct C-H activation of an aryl-H bond using NiII salts, and this route has been studied by X-ray absorption spectroscopy (XAS). Crystallographic XRD and XAS characterization has shown a tight macrocyclic coordination in the aryl-NiII complex, which may hamper direct reaction with nucleophiles. On the contrary, enhanced reactivity is observed with oxidants, and the reaction of [Ln -NiII ](OTf) with CF3+ sources afforded Ln -CF3 products in quantitative yield. A combined experimental and theoretical mechanistic study provides new insights into the operative mechanism for this transformation. Computational analysis indicates the occurrence of an initial single electron transfer (SET) to 5-(trifluoromethyl)dibenzothiophenium triflate (TDTT), producing a transient L1 -NiIII /CF3. adduct, which rapidly recombines to form a [L1 -NiIV -CF3 ](X)2 intermediate species. A final facile reductive elimination affords L1 -CF3 . The well-defined square-planar model system studied here permits to gain fundamental knowledge on the rich redox chemistry of nickel, which is sought to facilitate the development of new Ni-based trifluoromethylation methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.