Abstract

Alcohol production by olefin hydration is an important reaction in the modern intermediate chemistry. The use of trifluoroacetic acid (TFA) could be a way to increase alcohol productivity by addition of the TFA to the double bond forming the corresponding ester. The product obtained by addition is then hydrolyzed to alcohol by sulfonic resins. The study of the overall multiphase equilibrium aqueous TFA solution/olefin ester cyclohexene is carried out together with the initial rate of reaction for cyclohexene hydration. Reaction profiles and a likely reaction path is also given. The influence of the operative variable on both equilibria and initial reaction rate are studied in the range of temperature typical of the sulfonic resin as catalysts (383–413 K). The use of aqueous TFA allows fast reaction and high conversion as well as an easily separable aqueous system compared with other organic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call