Abstract
High-level ab initio calculations and variational transition state theory with small curvature tunneling have been used to study the aminolysis of trifluoroacetaldehyde catalyzed by a single water molecule. The results of energetic studies indicate that the energy barrier of the trifluoroacetaldehyde aminolysis reaction decreases along ammonia, methylamine, and dimethylamine. A single water molecule can significantly reduce the reaction energy barrier of trifluoroacetaldehyde aminolysis. In particular, the reaction involving dimethylamine has the lowest reaction energy barrier and the energy barrier is decreased to be −9.69 kcal/mol in the CF3CHO + (CH3)2NH + H2O reaction relative to CF3CHO, (CH3)2NH, and H2O separated reactants. Kinetic calculation shows that the rate coefficient of CF3CHO + (CH3)2NH⋯H2O ranges from 7.78 × 10−13 to 4.45 × 10−16 cm3⋅molecules−1⋅s−1 at 190–350 K. Here, we find an important CF3CHO elimination pathway, which can compete with the reaction of CF3CHO + OH when the OH concentration is 104 molecules⋅cm−3 and the dimethylamine concentration is higher than 109 molecules⋅cm−3 in the temperature range between 240 and 330 K. In addition, once (CH3)2NCH(OH)CF3 is formed by the reaction of CF3CHO + (CH3)2NH + H2O, it will further promote the growth of secondary organic aerosols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.