Abstract

Malondialdehyde (MDA) engages in a triel bond (TrB) with TrX3 (Tr = B and Al; X = H, F, Cl, and Br) in three modes, in which the hydroxyl O, carbonyl O, and central carbon atoms of MDA act as the electron donors, respectively. A H···X secondary interaction coexists with the TrB in the former two types of complexes. The carbonyl O forms a stronger TrB than the hydroxyl O, and both of them are better electron donors than the central carbon atom. The TrB formed by the hydroxyl O enhances the intramolecular H-bond in MDA and thus promotes proton transfer in MDA-BX3 (X = Cl and Br) and MDA-AlX3 (X = halogen), while a weakening H-bond and the inhibition of proton transfer are caused by the TrB formed by the carbonyl O. The TrB formed by the central carbon atom imposes little influence on the H-bond. The BH2 substitution on the central C-H bond can also realise the proton transfer in the triel-bonded complexes between the hydroxyl O and TrH3 (Tr = B and Al).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.