Abstract

BackgroundHigh-throughput sequencing is a powerful tool that is extensively applied in biological studies. However, sequencers may produce low-quality bases, leading to ambiguous bases, ‘N’s. PCR duplicates introduced in library preparation are conventionally removed in genomics studies, and several deduplication tools have been developed for this purpose. Two identical reads may appear different due to ambiguous bases and the existing tools cannot address ‘N’s correctly or efficiently.ResultsHere we proposed and implemented TrieDedup, which uses the trie (prefix tree) data structure to compare and store sequences. TrieDedup can handle ambiguous base ‘N’s, and efficiently deduplicate at the level of raw sequences. We also reduced its memory usage by approximately 20% by implementing restrictedDict in Python. We benchmarked the performance of the algorithm and showed that TrieDedup can deduplicate reads up to 270-fold faster than pairwise comparison at a cost of 32-fold higher memory usage.ConclusionsThe TrieDedup algorithm may facilitate PCR deduplication, barcode or UMI assignment, and repertoire diversity analysis of large-scale high-throughput sequencing datasets with its ultra-fast algorithm that can account for ambiguous bases due to sequencing errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.